
SANS 2023

Workshop: Beyond Firewalls: Techniques
for Protecting Cloud-Based Assets

Prerequisites
• An Azure account which you are the owner / have root access

• A laptop with a web browser

GitHub link: https://github.com/cy63rSANS/workshop1_deploy

Synopsis
When a system designed for on-premises operation is migrated to a public cloud, it is exposed to

additional vulnerabilities and risks of exploitation. This workshop will delve into the realm of cloud

native security solutions and techniques, to demonstrate how it is possible to protect such systems

that are otherwise considered indefensible particularly in the case of “Lift and Shift”.

Stage 1

Objective: Deploy lab assets
This entire workshop focuses on using the Azure web portal the Azure shell CLI. There are several

ways to access the CLI but we will focus on 2 methods for this lab.

If you are using Windows 11 you can access an inbuilt application called ‘Terminal’. Terminal allows

you to connect to Azure cloud shell without using the web browser.

https://github.com/cy63rSANS/workshop1_deploy

If you are using any other operating system other than Windows 11 you can use the browser to

directly access the shell using the link on the top right of the Azure portal.

Alternatively, and highly recommended you can also use a full browser-based shell from Azure just by

navigating to https://shell.azure.com

Requirement: When you first login to the cloud shell it will ask you for a storage account to log your

shell activity and provide you with profile storage space. Please just accept the defaults.

Now you’re in the console and the shell we can go ahead and deploy the workshop assets.

https://shell.azure.com/

Actions: Deployment process
1. In the shell run the following commands:

2. git clone https://github.com/cy63rSANS/workshop1_deploy
3. cd /workshop1_deploy

4. terraform init

5. terraform apply –auto-approve

You should now see terraform deploying your infrastructure.

WARNING: You may receive an error from the shell saying ERROR, the was an issue using MSI. If you

do receive this error, please run the following commands.

az login

Follow the instructions to sign in with the device ID.

Once you have completed this, please re-run the deployment instructions from number 3 onwards.

Once the deployment is complete you will see this:

Review: What you have just accomplished
The lab environment should now be deployed, you should be able to see the following assets in a

resource group called SANSWorkshop. You can find this in the Azure portal under ‘Resource Groups’

https://github.com/cy63rSANS/workshop1_deploy

You can retrieve your Webservers IP address from the Azure Portal by navigating to the Virtual

Machine object called ‘Webserver’ or you can retriceve the IP address by running this command in

the shell:

az network public-ip list -g SANSWorkshop | jq -r .[].ipAddress

Browsing to this IP should present you with this page:

WARNING: This page may take 5 mins before its available. Make sure you wait until you see this page

before proceeding.

Last deployment step:

Run this command from the cloud shell:

./final.sh

Once this command has completed you can run an attack against your webserver, simply paste your

webserver IP address in the page below and it will attack your site.

https://attack.cy63r.ninja

So, Who attacked you?

What was the source IP address?

https://attack.cy63r.ninja/

Defence and visibility remediations:
Add Application Gateway Max 15 mins

Objective: Add application gateway and WAF to protect webservice

You are going to add an application gateway to the resource group to protect the web application

and API

1. Navigate to ‘Application Gateways’

2.

3. Then click ‘Next.

4. Click on ‘WAF Policy’ and Create New, Then give the WAF a name:

5. Click on ‘Frontends’ then click to ‘Add New’ IP address

6.

7. Click on ‘Backends’ and then ‘Add Backend Pool’

8. Click ‘Next: Configuration’ and select ‘Add a routing Rule’

9. Complete as above then click ‘Backend Targets’ and click on Backend settings ‘Add New’

10. Complete as above then click ‘Add’, then ‘Add’ again

11. Again, click on ‘Add routing rule’

12. Complete as above then click on ‘Backend Targets’ and on Backend Settings select ‘Add New’

13.

14.
15. When it looks like this , Click ‘Add’ then ‘Add’ again

16.
17. It should now look like this, if so go to ‘Next: Tags’ then ‘Review and Create’, Then ‘Create’

18. This will take up to 15 minutes to provision.

19. Once provisioning is complete, return to the Application Gateway configuration and navigate

to ‘Health Rules’

20. Create new health rule that matches the following configuration:

21.

22.

23. Click on test, then ‘Add’

24. Application Gateway configuration is now complete.

25. You now have to update some webserver configurations to complete this upgrade, I have

provided a script to do this. Back in the Azure shell run the following script:

26. ./appGwFix.sh

Your new webserver IP will be shown, you can now return to the attack website to generate some

traffic for your logs.

Objective: Configure log visibility

To get logs from this webserver we need to use the AMA logging agent, Since Ubuntu 22.04 is not

supported for the Log Analytics agent.

1. Navigate to ‘Data Collection Endpoints’ and click ‘Create’.

2.
3. Click ‘Review and Create

4. Now Navigate to ‘Monitor’ and under ‘Settings’ select ‘Data Collection Rules, and click

‘Create’

5.
6. Click on ‘Resources’ and the ‘Add Resources’ the select the Webserver:

7. Click on ‘Collect and Deliver’ then ‘+Add Data Source’ and select ‘Linux Syslog’, then

‘Destination’ tab before selecting the fairlinelogs (SANSWorkshop) account

8. Then click ‘review and Create’

If you now navigate to the Virtual Machine ‘Webserver’ and navigate to ‘Extensions and

applications’ you should see 2 agents added, these are you data collector agents and within a

few minutes you should start receiving logs.

Try navigating to ‘Logs’ under the Monitoring section and running this query:

Syslog

| top 100 by TimeGenerated desc

Objective: Application Gateway adjustments and logging

Now you should check your application gateway is working properly and configure some additional

logging.

1. Navigate to ‘Diagnostic settings’ and click on ‘+Add diagnostic Setting’

2. Click on Save, Test the website and if everything is working:

Now we have to update the NSG to stop direct traffic from hitting the webserver so all traffic

now has to traverse the Application Gateway.

1. Navigate to the resource group and click on the NSG1

2. Click on the WebApp_Inbound rule and change the source to ‘Service Tag’ then select the

‘Source Service Tag’ ‘GatewayManager’

3. Click ‘Save’ and wait a few minutes before testing the AppGW IP and Old IP for access to the

webserver.

Bonus Objective: Add security to Storage Account

You can also add security to the Storage account which is currently public, you can do this configuring

the Network rules to only allow access from the webserver vNet and Subnet.

1. Navigate to the Storage account from the resource group

2. Click on ‘Networking’

3. Select ‘Enabled from selected virtual networks and IP addresses’

4.
5. Configure as above and click ‘Enable’ then wait a few minutes until you are notified the

endpoint has been created.

6. Now click ‘Add’ and then ‘Save’ at the top of the window.

7. On the left hand side, scroll down to ‘Diagnostics settings’ and click on ‘Blob’

8. ‘Click on ‘+Add diagnostic Settings’ and configure as below:

You have now configured all defensive and logging agents and services.

Request some further attacks against your web application from here:

https://attack.cy63r.ninja

You can now view in the logs the source of the attacks, the method used and the files

acquired.

Below are some hints and tips the types of queries you can use:

https://attack.cy63r.ninja/

Monitor Queries:
Heartbeat : check to make sure logs are arriving

VM:

Heartbeat

| where TimeGenerated > ago(1h)

| summarize NoHeartbeatPeriod = now() - max(TimeGenerated) by

Computer

| top 10 by NoHeartbeatPeriod desc

Syslog – SSH attack

Syslog

| top 100 by TimeGenerated desc

| where Facility == "authpriv"

Syslog – User ID of SSH attacks

Syslog

| top 100 by TimeGenerated desc

| where Facility != "user"

Log Analytics Queries:

All Application Data logging

App gateway:

AzureDiagnostics

| where Category == "ApplicationGatewayAccessLog"

Application Data Logging successful downloads / connections

AzureDiagnostics

| where ResourceType == "APPLICATIONGATEWAYS"

 and OperationName == "ApplicationGatewayAccess"

 and httpStatus_d > 200

AzureDiagnostics

| where Category == "ApplicationGatewayAccessLog"

| where host_s == "xxx.xxx.xxx.xxx"

| summarize count() by host_s, bin(TimeGenerated, 30m)

| render timechart

Total requests by URL

AzureDiagnostics

| where ResourceProvider == "MICROSOFT.NETWORK" and Category ==

"ApplicationGatewayAccessLog"

| summarize count() by requestUri_s

Requests per minute by URL in timechart

AzureDiagnostics

| where ResourceProvider == "MICROSOFT.NETWORK" and Category ==

"ApplicationGatewayAccessLog"

| summarize count() by requestUri_s, bin(TimeGenerated, 1m)

| render timechart

Requests of URL by IP address

AzureDiagnostics

| where ResourceProvider == "MICROSOFT.NETWORK" and Category ==

"ApplicationGatewayAccessLog"

| summarize count() by requestUri_s,clientIP_s,requestQuery_s

Requests resulting in >500+ responses by URL in the last hour

AzureDiagnostics

| where ResourceProvider == "MICROSOFT.NETWORK" and Category ==

"ApplicationGatewayAccessLog"

| where httpStatus_d >= 500

| summarize count(httpStatus_d) by httpStatus_d,requestUri_s,

bin(TimeGenerated, 1h)

| order by count_httpStatus_d desc

| project httpStatus_d, requestUri_s, TimeGenerated,

count_httpStatus_d

Failed requests over time

AzureDiagnostics

| where ResourceProvider == "MICROSOFT.NETWORK" and Category ==

"ApplicationGatewayAccessLog"

| where httpStatus_d >= 400

| parse requestQuery_s with "SERVER-ROUTED=" serverRouted "&"

| extend httpStatus = tostring(httpStatus_d)

| summarize count() by serverRouted, bin(TimeGenerated, 5m)

| render timechart

